Bayesian semiparametric multiple shrinkage.
نویسندگان
چکیده
High-dimensional and highly correlated data leading to non- or weakly identified effects are commonplace. Maximum likelihood will typically fail in such situations and a variety of shrinkage methods have been proposed. Standard techniques, such as ridge regression or the lasso, shrink estimates toward zero, with some approaches allowing coefficients to be selected out of the model by achieving a value of zero. When substantive information is available, estimates can be shrunk to nonnull values; however, such information may not be available. We propose a Bayesian semiparametric approach that allows shrinkage to multiple locations. Coefficients are given a mixture of heavy-tailed double exponential priors, with location and scale parameters assigned Dirichlet process hyperpriors to allow groups of coefficients to be shrunk toward the same, possibly nonzero, mean. Our approach favors sparse, but flexible, structure by shrinking toward a small number of random locations. The methods are illustrated using a study of genetic polymorphisms and Parkinson's disease.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملApplication of multiple shrinkage methods to genomic predictions.
New challenges have arisen with the development of large marker panels for livestock species. Models easily become overparameterized when all available markers are included. Solutions have led to the development of shrinkage or regularization techniques. The objective of this study was the application and comparison of Bayesian LASSO (B-L), thick-tailed (Student-t), and semiparametric multiple ...
متن کاملThe Multiple Bayesian Elastic Net
We propose the multiple Bayesian elastic net (abbreviated as MBEN), a new regularization and variable selection method. High dimensional and highly correlated data are commonplace. In such situations, maximum likelihood procedures typically fail—their estimates are unstable, and have large variance. To address this problem, a number of shrinkage methods have been proposed, including ridge regre...
متن کاملBayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data
Variable selection for high dimensional data has recently received a great deal of attention. However, due to the complex structure of the likelihood, only limited developments have been made for time-to-event data where censoring is present. In this paper, we propose a Bayesian variable selection scheme for a Bayesian semiparametric survival model for right censored survival data sets. A speci...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2010